Computational Fluid Dynamics Study of Separated Flow Over a Three-Dimensional Axisymmetric Hill

Author:

Chitta Varun1,Jamal Tausif2,Keith Walters D.2

Affiliation:

1. Calsonic Kansei, Farmington Hills, MI 48331 e-mail:

2. School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019 e-mail:

Abstract

This paper investigates the ability of computational fluid dynamics (CFD) simulations to accurately predict the turbulent flow separating from a three-dimensional (3D) axisymmetric hill using a recently developed four-equation eddy-viscosity model (EVM). The four-equation model, denoted as k–kL–ω–v2, was developed to demonstrate physically accurate responses to flow transition, streamline curvature, and system rotation effects. The model was previously tested on several two-dimensional cases with results showing improvement in predictions when compared to other popularly available EVMs. In this paper, we present a more complex 3D application of the model. The test case is turbulent boundary layer flow with thickness δ over a hill of height 2δ mounted in an enclosed channel. The flow Reynolds number based on the hill height (ReH) is 1.3 × 105. For validation purposes, CFD simulation results obtained using the k–kL–ω–v2 model are compared with two other Reynolds-averaged Navier–Stokes (RANS) models (fully turbulent shear stress transport k–ω and transition-sensitive k–kL–ω) and with experimental data. Results obtained from the simulations in terms of mean flow statistics, pressure distribution, and turbulence characteristics are presented and discussed in detail. The results indicate that both the complex physics of flow transition and streamline curvature should be taken into account to significantly improve RANS-based CFD predictions for applications involving blunt or curved bodies in a low Re turbulent regime.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3