Elastic Deformation of Mineralized Collagen Fibrils: An Equivalent Inclusion Based Composite Model

Author:

Akkus Ozan1

Affiliation:

1. Ph.DDepartment of Bioengineering, The University of Toledo, 2801 W. Bancroft St., Mail Stop 303, Toledo, OH 43606-3390

Abstract

Mineralized collagen fibrils are the basic building blocks of bone tissue at the supramolecular level. Several disease states, manipulation of the expression of specific proteins involved in biomineralization, and treatment with different agents alter the extent of mineralization as well as the morphology of mineral crystals which in turn affect the mechanical function of bone tissue. An experimental assessment of mineralized fibers’ mechanical properties is challenged by their small size, leaving analytical and computational models as a viable alternative for investigation of the fibril-level mechanical properties. In the current study the variation of the elastic stiffness tensor of mineralized collagen fibrils with changing mineral volume fraction and mineral aspect ratios was predicted via a micromechanical model. The partitioning of applied stresses between mineral and collagen phases is also predicted for normal and shear loading of fibrils. Model predictions resulted in transversely isotropic collagen fibrils in which the modulus along the longer axis of the fibril was the greatest. All the elastic moduli increased with increasing mineral volume fraction whereas Poisson’s ratios decreased with the exception of ν12(=ν21). The partitioning of applied stresses were such that the stresses acting on mineral crystals were about 1.5, 15, and 3 times greater than collagen stresses when fibrils were loaded transversely, longitudinally, and in shear, respectively. In the overall the predictions were such that: (a) greatest modulus along longer axis; (b) the greatest mineral/collagen stress ratio along the longer axis of collagen fibers (i.e., greatest relief of stresses acting on collagen); and (c) minimal lateral contraction when fibers are loaded along the longer axis. Overall, the pattern of mineralization as put forth in this model predicts a superior mechanical function along the longer axis of collagen fibers, the direction which is more likely to experience greater stresses.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3