A Sequential Optimization Algorithm Using Logarithmic Barriers: Applications to Structural Optimization

Author:

Kumar Ashok V.1

Affiliation:

1. Department of Mechanical Engineering, University of Florida, Gainesville, FL 32611

Abstract

A sequential approximation algorithm is presented here that is particularly suited for problems in engineering design and structural optimization, where the number of variables is very large and function and sensitivity evaluations are computationally expensive. A sequence of sub-problems are generated using a linear approximation for the objective function and setting move limits on the variables using a barrier method. These sub-problems are strictly convex and computation per iteration is significantly reduced by not solving the sub-problems exactly. Instead a few Newton-steps are taken for each sub-problem generated. A criterion, for setting the move limit, is described that reduces or eliminates step size reduction during line search. The method was found to perform well for unconstrained and linearly constrained optimization problems. It is particularly suitable for application to design of optimal shape and topology of structures by minimizing their compliance since it requires very few function evaluations, does not require the hessian of the objective function and evaluates its gradient only once for every sub-problem generated. [S1050-0472(00)01603-2]

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Conceptual Design of Structures Using an Upper Bound of von Mises Stress;Journal of Computing and Information Science in Engineering;2018-11-19

2. Topology optimization using B-spline finite elements;Structural and Multidisciplinary Optimization;2011-05-07

3. Integrated shape and material selection for single and multi-performance criteria;Materials & Design;2011-05

4. Smooth Shape and Topology Design Using B-Spline Elements;51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference<BR> 18th AIAA/ASME/AHS Adaptive Structures Conference<BR> 12th;2010-04-12

5. Design of Multifunctional Composite Structures;49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference <br> 16th AIAA/ASME/AHS Adaptive Structures Conference<br> 10t;2008-04-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3