Affiliation:
1. Department of Mechanical Engineering, University of Florida, Gainesville, FL 32611
Abstract
A sequential approximation algorithm is presented here that is particularly suited for problems in engineering design and structural optimization, where the number of variables is very large and function and sensitivity evaluations are computationally expensive. A sequence of sub-problems are generated using a linear approximation for the objective function and setting move limits on the variables using a barrier method. These sub-problems are strictly convex and computation per iteration is significantly reduced by not solving the sub-problems exactly. Instead a few Newton-steps are taken for each sub-problem generated. A criterion, for setting the move limit, is described that reduces or eliminates step size reduction during line search. The method was found to perform well for unconstrained and linearly constrained optimization problems. It is particularly suitable for application to design of optimal shape and topology of structures by minimizing their compliance since it requires very few function evaluations, does not require the hessian of the objective function and evaluates its gradient only once for every sub-problem generated. [S1050-0472(00)01603-2]
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Conceptual Design of Structures Using an Upper Bound of von Mises Stress;Journal of Computing and Information Science in Engineering;2018-11-19
2. Topology optimization using B-spline finite elements;Structural and Multidisciplinary Optimization;2011-05-07
3. Integrated shape and material selection for single and multi-performance criteria;Materials & Design;2011-05
4. Smooth Shape and Topology Design Using B-Spline Elements;51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference<BR> 18th AIAA/ASME/AHS Adaptive Structures Conference<BR> 12th;2010-04-12
5. Design of Multifunctional Composite Structures;49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference <br> 16th AIAA/ASME/AHS Adaptive Structures Conference<br> 10t;2008-04-07