Optimizing Preloading Pressure of Precharged Gas for Isobaric Gas-Tight Hydrothermal Samplers

Author:

Huang Haocai1,Huang Liang2,Ye Wei2,Wu Shijun3,Yang Canjun3,Chen Ying3,Wang Hangzhou4

Affiliation:

1. Ocean College, Zhejiang University, Zhoushan 316021, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China e-mail:

2. Ocean College, Zhejiang University, Zhoushan 316021, China e-mail:

3. The State Key Lab of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310027, China e-mail:

4. The State Key Lab of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; Ocean College, Zhejiang University, Zhoushan 316021, China e-mail:

Abstract

Isobaric gas-tight hydrothermal samplers, with the ability to maintain pressure, can be used to keep in situ chemical and biological sample properties stable. The preloading pressure of the precharged gas is a major concern for isobaric gas-tight hydrothermal samplers, especially when the samplers are used at different sampling depths, where the in situ pressures and ambient temperatures vary greatly. The most commonly adopted solution is to set the preloading pressure for gas-tight samplers as 10% of the hydrostatic pressure at the sampling depth, which might emphasize too much on pressure retention; thereby, the sample volume may be unnecessarily reduced. The pressure transition of the precharged gas was analyzed theoretically and modeled at each sampling stage of the entire field application process. Additionally, theoretical models were built to represent the pressure and volume of hydrothermal fluid samples as a function of the preloading pressure of the precharged gas. Further, laboratory simulation and examination approaches were also adopted and compared, in order to obtain the volume change of the sample and accumulator chambers. By using theoretical models and the volume change of the two chambers, the optimized preloading pressure for the precharged gas was obtained. Under the optimized preloading pressure, the in situ pressure of the fluid samples could be maintained, and their volume was maximized. The optimized preloading pressure obtained in this study should also be applicable to other isobaric gas-tight hydrothermal samplers, by adopting a similar approach to pressure maintenance.

Funder

National Natural Science Foundation of China

Ministry of Education of the People's Republic of China

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference15 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3