One-Dimensional Bubbly Cavitating Flows Through a Converging-Diverging Nozzle

Author:

Wang Yi-Chun1,Brennen C. E.2

Affiliation:

1. Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan

2. Department of Mechanical Engineering, California Institute of Technology, Pasadena, CA 91125

Abstract

A nonbarotropic continuum bubbly mixture model is used to study the one-dimensional cavitating flow through a converging-diverging nozzle. The nonlinear dynamics of the cavitation bubbles are modeled by the Rayleigh-Plesset equation. Analytical results show that the bubble/bubble interaction through the hydrodynamics of the surrounding liquid has important effects on this confined flow field. One clear interaction effect is the Bernoulli effect caused by the growing and collapsing bubbles in the nozzle. It is found that the characteristics of the flow change dramatically even when the upstream void fraction is very small. Two different flow regimes are found from the steady state solutions and are termed: quasi-steady and quasi-unsteady. The former is characterized by large spatial fluctuations downstream of the throat which are induced by the pulsations of the cavitation bubbles. The quasi-unsteady solutions correspond to flashing flow. Bifurcation occurs as the flow transitions from one regime to the other. An analytical expression for the critical bubble size at the bifurcation is obtained. Physical reasons for this quasi-static instability are also discussed.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3