Abstract
Recent experiments have shown that thermal conductivity of carbon nanotubes can be more than twice that of diamond. It should be noted that high mechanical strength often comes with high thermal conductivities. Recent experiments have shown that the thermal conductivity of carbon nanotubes can be as high as 3000 to 6000 W/m K at room temperature, which is more than twice that of diamond. It was recently shown by Alex Zettl and his group at the University of California, Berkeley that the relative motion between different shells of multiwall carbon nanotubes has some unique properties and can serve as excellent mechanical bearings that do not undergo any wear. Recent work has led to multifunctional probes, which, besides topography, can detect thermal, electrical, magnetic, and optical signals at nanoscales. The engineering challenge now is to develop microelectromechanical systems (MEMS)-based probes that integrate multiple functions on a single tip.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献