Thermal Conduction in Nonhomogeneous CVD Diamond Layers in Electronic Microstructures

Author:

Goodson K. E.1

Affiliation:

1. Mechanical Engineering Department, Stanford University, Stanford, CA 94305-3030

Abstract

Chemical-vapor-deposited diamond layers of thickness between 0.1 and 5 μm have the potential to improve conduction cooling in electronic microstructures. However, thermal conduction in these layers is strongly impeded by phonon scattering on defects, whose concentrations can be highly nonhomogeneous, and on layer boundaries. By assuming that defects are concentrated near grain boundaries, this work relates the internal phonon scattering rate to the local characteristic grain dimension and to the dimensionless grain-boundary scattering strength, a parameter defined here that varies little within a given layer. Solutions to the Peierls–Boltzmann phonon transport equation for conduction along and normal to layers account for the nonhomogeneous internal scattering rate. Predictions for conduction along and normal to layers as thin as 0.2 μm agree well with room-temperature data. This research helps optimize diamond layer thicknesses for specific microstructures, such as silicon-on-diamond (SOD) circuits.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference28 articles.

1. Annamalai, N. K., Sawyer, J., Karulkar, P., Masyara, W., and Landstrass, M., 1993, “Silicon-on-Diamond Field-Effect Devices,” Proceedings of the 3rd IUMRS International Conference on Advanced Materials, Tokyo, Japan, Aug. 31–Sept. 4.

2. Berman, R., 1976, Thermal Conduction in Solids, Oxford University Press, Oxford, United Kingdom, p. 23.

3. Brewster, M. Q., 1992, Thermal Radiative Transfer and Properties, Wiley, New York, Chap. 11, p. 232.

4. Chen G. , and TienC. L., 1993, “Thermal Conductivity of Quantum-Well Structures,” J. Thermophysics and Heat Transfer, Vol. 7, pp. 311–318.

5. Flik M. I. , ChoiB. I., and GoodsonK. E., 1992, “Heat Transfer Regimes in Microstructures,” ASME JOURNAL OF HEAT TRANSFER, Vol. 114, pp. 666–674.

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anisotropic and inhomogeneous thermal conductivity of sub-micrometer polycrystalline diamond thin films: A Monte Carlo ray tracing simulation study;International Communications in Heat and Mass Transfer;2024-08

2. Machine learning reconstruction of depth-dependent thermal conductivity profile from pump–probe thermoreflectance signals;Applied Physics Letters;2023-04-03

3. THERMAL CONDUCTIVITY OF DOPED POLYSILICON LAYERS;Proceeding of Heat Transfer and Transport Phenomena in Microscale;2023

4. MODELING PHONON TRANSPORT IN SOLID THIN FILMS;Proceeding of Heat Transfer and Transport Phenomena in Microscale;2023

5. Heat transport in polycrystalline diamond from the meso to the nano scale;Thermal Management of Gallium Nitride Electronics;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3