Machining Simulation in Focused Ion Beam Sputtering

Author:

Matsumura Takashi1,Ogasawara Ryosuke2

Affiliation:

1. Department of Mechanical Engineering, Tokyo Denki University, 5 Senjyu Asahi-cho, Adachi-ku, Tokyo 120-8551, Japan

2. Production Engineering Headquarters, Canon, Inc., 70-1, Yanagi-cho, Saiwai-ku, Kawasaki-shi, Kanagawa 212-8602, Japan

Abstract

Abstract Focused ion beam (FIB) has been applied to micro/nanometer-scale fabrication to control surface functions with the surface topographies. Although the resolution of the FIB sputtering is in the nanometer-scale range in positioning, the removal shape in the depth direction cannot be controlled numerically. This study presents a removal model to predict the surface profile in the simulation. The removal rate depends on not only the ion beam intensity but also the incident angle onto the surface to be structured. The removal model considers the effects of those two parameters to control the surface profile in sputtering. The removal rates in sputtering of the inclined surfaces at incident angles are associated with a Gaussian distribution. The parameters in the model were identified to minimize the simulation error validated against the sputtering tests. The presented model was applied to simulate the microscale structures on surfaces using the identified parameters. The simulation was validated in comparison with the actual machined shapes.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Process Chemistry and Technology,Mechanics of Materials

Reference8 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3