Parameterizing the Effects of Tumor Shape in Magnetic Nanoparticle Thermotherapy Through a Computational Approach

Author:

Singh Amritpal1,Kumar Neeraj2

Affiliation:

1. Department of Mechanical Engineering, Thapar Institute of Engineering and Technology, Patiala 147004, India

2. Department of Mechanical Engineering, Thapar Institute of Engineering and Technology, Patiala 147004, India; Virginia Tech- TIET Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala 147004, India

Abstract

Abstract In this work, effects of tumor shape on magnetic nanoparticle hyperthermia (MNPH) are investigated and evaluated using four categories (spherical, oblate, prolate, and egg-shape) of tumor models having different morphologies. These tumors have equal volume; however, due to the differences in their shapes, they have different surface areas. The shape of tumors is quantified in terms of shape factor (ζ). Simulations for MNPH are done on the physical model constituting tumor tissue enclosed within the healthy tissue. Magnetic hyperthermia is applied (frequency 150 kHz, and magnetic field amplitude 20.5 kA/m) to all tumor models, for 1 h, after injection of magnetic nanoparticles (MNPs) at the respective tumor centroids. The distribution of MNPs after injection is considered Gaussian. The governing model (Pennes' bioheat model) of heat transfer in biological media is solved with the finite volume-immersed boundary (FV-IB) method to simulate MNPH. Therapeutic effects are calculated using the Arrhenius tissue damage model, cumulative equivalent minutes at 43 °C (CEM 43), and heterogeneity in temperature profiles of the tumors. Results show that the therapeutic effects of MNPH depend significantly on the shape of a tumor. Tumors with higher shape factors receive less therapeutic effects in comparison to the tumors having lower shape factors. An empirical thermal damage model is also developed to assess the MNPH efficacy in real complex-shaped tumors.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Estimation of the injection criteria for magnetic hyperthermia therapy based on tumor morphology;Biomedical Physics & Engineering Express;2024-07-29

2. Effect of Arterial Flow on Heat Transfer During Magnetic Hyperthermia Application;Lecture Notes in Mechanical Engineering;2024

3. Evaluation of the cooling effect due to the presence of major blood vessel on the magnetic hyperthermia therapy;Proceeding of Proceedings of the 27th National and 5th International ISHMT-ASTFE Heat and Mass Transfer Conference December 14-17, 2023, IIT Patna, Patna-801106, Bihar, India;2024

4. Tumor size dependent MNP dose evaluation in realistic breast tumor models for effective magnetic hyperthermia;Medical Engineering & Physics;2023-11

5. A coupled finite-volume immersed boundary method for the simulation of bioheat transfer in 3D complex tumor;Engineering with Computers;2023-02-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3