Modeling of Supercritical CO2 Flow Through Short Tube Orifices

Author:

Zhang Chun-Lu1,Yang Liang2

Affiliation:

1. Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, No. 1954 Hua Shan Road, Shanghai 200030, China

2. China R&D Center, Carrier Corporation, #29-06 King Tower, No.28 Xinjinqiao Road, Pudong, Shanghai 201206, China

Abstract

The transcritical cycle of carbon dioxide (CO2) is a promising alternative approach to heat pumps and automobile air conditioners. As an expansion device, the short tube orifice in a transcritical CO2 system usually receives supercritical fluid at the entrance and discharges a two-phase mixture at the exit. In this work, a two-fluid model (TFM) is developed for modeling the flow characteristics of supercritical CO2 through the short tube orifice. The deviations between the TFM predictions and the measured mass flow rates are within ±20%. Meanwhile, the TFM predicts reasonable pressure, temperature, and velocity distributions along the tube length. The small values of interphase temperature difference and velocity slip indicate that the nonequilibrium characteristics of the two-phase flow of CO2 in the short tube orifice are not significant. Consequently, the homogeneous equilibrium model reduced from the TFM gives a good prediction of the mass flow rate as well.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3