Affiliation:
1. Center for Advanced Turbomachinery and Energy Research, University of Central Florida, Orlando, FL 32816 e-mail:
2. Eagle Flight Research Center, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114 e-mail:
3. Institute for Flow Physics and Control, University of Notre Dame, South Bend, IN 46556 e-mail:
Abstract
The tabulated premixed conditional moment closure (T-PCMC) method has been shown to provide the capability to model turbulent, premixed methane flames with detailed chemistry and reasonable runtimes in Reynolds-averaged Navier–Stokes (RANS) environment by Martin et al. (2013, “Modeling an Enclosed, Turbulent Reacting Methane Jet With the Premixed Conditional Moment Closure Method,” ASME Paper No. GT2013-95092). Here, the premixed conditional moment closure (PCMC) method is extended to large eddy simulation (LES). The new model is validated with the turbulent, enclosed reacting methane backward facing step data from El Banhawy et al. (1983, “Premixed, Turbulent Combustion of a Sudden-Expansion Flow,” Combust. Flame, 50, pp. 153–165). The experimental data have a rectangular test section at atmospheric pressure and temperature with an inlet velocity of 10.5 m/s and an equivalence ratio of 0.9 for two different step heights. Contours of major species, velocity, and temperature are provided. The T-PCMC model falls into the class of table lookup turbulent combustion models in which the combustion model is solved offline over a range of conditions and stored in a table that is accessed by the computational fluid dynamic (CFD) code using three controlling variables: the reaction progress variable (RPV), variance, and local scalar dissipation rate. The local scalar dissipation rate is used to account for the affects of the small-scale mixing on the reaction rates. A presumed shape beta function probability density function (PDF) is used to account for the effects of subgrid scale (SGS) turbulence on the reactions. SGS models are incorporated for the scalar dissipation and variance. The open source CFD code OpenFOAM is used with the compressible Smagorinsky LES model. Velocity, temperature, and major species are compared to the experimental data. Once validated, this low “runtime” CFD turbulent combustion model will have great utility for designing the next generation of lean premixed (LPM) gas turbine combustors.
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Reference32 articles.
1. A Mechanism of Combustion Instability in Lean Premixed Gas Turbine Combustors;ASME J. Eng. Gas Turbines Power,2001
2. Amzin, S., 2012, “Conditional Moment Closure Method for Turbulent Premixed Flames,” Ph.D. thesis, Cambridge University, Cambridge, UK.
3. Turbulent Premixed Combustion: Flamelet Structure and Its Effect on Turbulent Burning Velocities;Prog. Energy Combust. Sci.,2008
4. Martin, S., Kramlich, J., Kosaly, G., and Riley, J., 2001, “The Conditional Moment Closure Method For Premixed Turbulent Combustion,” Eastern States Section Fall Technical Meeting of the Combustion Institute, Hilton Head, SC, Dec. 3–5, pp. 245–248.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献