Phase Change in Liquid Face Seals II—Isothermal and Adiabatic Bounds With Real Fluids

Author:

Hughes W. F.1,Chao N. H.1

Affiliation:

1. Carnegie-Mellon University, Pittsburgh, Pa. 15213

Abstract

Phase change effects in parallel and tapered liquid face seals are studied analytically. Both an isothermal and adiabatic model of low Reynolds number flow are considered by numerical integration of the descriptive equations for a real fluid. Real fluid thermodynamic properties are calculated for each step, using a computer program for the steam tables or thermodynamic properties of the fluid considered. Examples are presented for water. The general conclusions are: 1. For low leakage rate the isothermal model is more accurate and for high leakage rates the adiabatic model is more accurate. 2. Both parallel models, ordinarily neutrally stable with a liquid, yield the same general conclusions about stability. If the sealed fluid is near enough to saturation conditions, there will exist generally two values of the film gap, h, which yield the same separating force under a given set of operating conditions. For a given speed, face excursions about the larger value are stable, but excursions about the lower value are unstable, either growing to the larger h if displaced apart or collapsing if displaced together. 3. The transient of collapse is described by the adiabatic model which predicts a catastrophic collapse and then either failure or explosive return to a larger value of h. 4. Converging seals (ordinarily stable with a liquid at some given value of h) may become unstable, the phase change effect dominating the behavior and giving rise to collapse as described above. 5. The mass leakage rate is reduced significantly below the all liquid value when boiling occurs.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3