The Parametric Resonance Instability in a Drilling Process

Author:

Huang Bo-Wun1,Kuang Jao-Hwa2

Affiliation:

1. Department of Mechanical Engineering, Cheng Shiu University, 840 Cheng Ching Road, Niaosung, Kaohsiung, Taiwan

2. Department of Mechanical and Electromechanical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan

Abstract

This study investigates dynamic instability in a high-speed drilling process. A pretwisted beam is used to simulate the drill. The time-dependent nature of the thrust force and the drilling depth is considered in the equation of motion of the drill. A moving Winkler-type elastic foundation assumption is applied to the drill tip to approximate the time-varying boundary conditions in the drilling process. Galerkin’s method is used to formulate the characteristic equation in a discrete form. The variation of the instability regions of the drill system is solved and analyzed by employing the multiple-scales perturbation method. The numerical results indicate that the unstable regions suddenly enlarge and shift toward a lower frequency when the drill first contacts the work piece. The effects of the rotational speed, pretwisted angle, and thrust force of the drill on the variation of the dynamic instability in high-speed drilling are also studied and are found to be highly influential.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3