Influence of Surface Heating Condition on Local Heat Transfer in a Rotating Square Channel With Smooth Walls and Radial Outward Flow

Author:

Han J. C.1,Zhang Y. M.1,Lee C. P.2

Affiliation:

1. Turbine Heat Transfer Laboratory, Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123

2. Turbine Aero & Cooling Design, General Electric Company, Cincinnati, OH 45215

Abstract

The effect of a surface heating condition on the local heat transfer coefficient in a rotating square channel with smooth walls and radial outward flow was investigated for Reynolds numbers from 2500 to 25,000 and rotation numbers from 0 to 0.352. The square channel, composed of six isolated copper sections, has a length-to-hydraulic diameter ratio of 12. The mean rotating radius to the channel hydraulic diameter ratio is kept at a constant value of 30. Four surface heating conditions were tested: (1) four walls at uniform temperature, (2) temperature ratio of leading surface to side wall and trailing surface to side wall is 1.05 and 1.10, respectively, (3) trailing surface hot and remaining three walls cold, and (4) leading surface hot and remaining three walls cold. The results show that the heat transfer coefficients on the leading surface are much lower than that of the trailing surface due to rotation. For case (1) of four walls at uniform temperature, the leading surface heat transfer coefficient decreases and then increases with increasing rotation numbers, and the trailing surface heat transfer coefficient increases monotonically with rotation numbers. However, the trailing surface heat transfer coefficients for cases (2) and (3) are slightly lower than case (1), and the leading surface heat transfer coefficients for cases (2) and (4) are significantly higher than for case (1). The results suggest that the local wall heating condition creates the local buoyancy forces, which reduce the effects of the bulk buoyancy and Coriolis forces. Therefore, the local heat transfer coefficients on the leading and trailing surfaces are altered by the surface local heating condition.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3