Prediction of Burst in Flexible Pipes

Author:

Neto Alfredo Gay1,Martins Clóvis de Arruda,Pesce Celso Pupo,Meirelles Christiano Odir C.,Malta Eduardo Ribeiro2,Neto Teofilo Ferreira Barbosa,Godinho Carlos Alberto Ferreira3

Affiliation:

1. e-mail:

2. Department of Mechanical Engineering, University of São Paulo, São Paulo, SP, Brazil

3. Prysmian Cables and Systems, Santo André, SP, Brazil

Abstract

Usually when a large internal fluid pressure acts on the inner walls of flexible pipes, the carcass layer is not loaded, as the first internal pressure resistance is given by the internal polymeric layer that transmits almost all the loading to the metallic pressure armor layer. The last one must be designed to ensure that the flexible pipe will not fail when loaded by a defined value of internal pressure. This paper presents three different numerical models and an analytical nonlinear model for determining the maximum internal pressure loading withstood by a flexible pipe without burst. The first of the numerical models is a ring approximation for the helically rolled pressure layer, considering its actual cross section profile. The second one is a full model for the same structure, considering the pressure layer laying angle and the cross section as built. The last numerical model is a two-dimensional (2D) simplified version, considering the pressure layer as an equivalent ring. The first two numerical models consider contact nonlinearities and a nonlinear elastic-plastic material model for the pressure layer. The analytical model considers the pressure armor layer as an equivalent ring, taking into account geometrical and material nonlinear behaviors. Assumptions and results for each model are compared and discussed. The failure event and the corresponding stress state are commented.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3