Kinetic to Potential Energy Transformation Using a Spring as an Intermediary: Application to the Pole Vault Problem

Author:

Chau Sheryl1,Mukherjee Ranjan1

Affiliation:

1. Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824 e-mail:

Abstract

The kinetic energy of a mass moving horizontally can be completely converted into potential energy using a spring as an intermediary. The spring can be used to temporarily store some of the energy of the mass and change the direction of motion of the mass from horizontal to vertical. A nondimensional framework is used to study this problem for a point mass, first with a linear spring and then with a nonlinear spring that is an elastica. Solutions to the problems with the linear spring and elastica show many similarities and some dissimilarities. The dynamics of the point mass and elastica resemble the mechanics of a pole-vault; and therefore, a nonconservative external torque is introduced to parallel the muscle work done by vaulters. For the nonconservative system, the problem is solved for complete transformation of the kinetic energy of the mass and the work done by the external torque into potential energy of the mass. The initial velocities for the two cases, with and without the nonconservative force, are quite similar; and therefore, the maximum potential energy of the mass is higher in the presence of the nonconservative force. A realistic dimensional example is considered; the solution to the problem, despite several simplifying assumptions, is found to be similar to data of elite pole vaulters presented in the literature.

Funder

Directorate for Engineering

Division of Graduate Education

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference22 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Non-linear stochastic dynamics analysis of mechanical systems using non-intrusive polynomial chaos method: application to pole vaulting;Meccanica;2023-11-09

2. A perturbation method for the Stochastic dynamic analysis of mechanical systems: Application to pole vaulting;2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET);2022-03-03

3. The Perturbation Method for Dynamic Analysis of Pole Vaulting;The 15th International Conference Interdisciplinarity in Engineering;2022

4. Force–displacement characteristics of circular-shaped massless elastica;Acta Mechanica;2020-08-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3