Detection of Separation Bubbles by Infrared Images in Transonic Turbine Cascades

Author:

Bra¨unling W.1,Quast A.2,Dietrichs H.-J.3

Affiliation:

1. DFVLR, Institute for Experimental Fluid Mechanics, Go¨ttingen, Federal Republic of Germany

2. DFVLR, Institute for Design Aerodynamics, Braunschweig, Federal Republic of Germany

3. Motoren und Turbinen Union Mu¨nchen GmbH, Munich, Federal Republic of Germany

Abstract

In a test facility for straight cascades, equipped with profiles designed for a highly loaded gas turbine rotor of a high-pressure stage, experiments were conducted to clarify some effects of shock wave–boundary layer interactions. The specific aim was to determine both the position and strength of compression shocks originating from profile wake flows and the position and extent of separation bubbles. The latter are most often detected by visualization methods like surface oil flow patterns or Schlieren photographs, as well as by typical properties in wall pressure distribution curves. In addition, the infrared image technique, which has found many applications in a wide range of technical activities in the recent years, may also be used. Compared with other methods, this technique has distinct advantages in fluid mechanics applications. The whole model can be observed without disturbing the boundary layer by tappings, measuring materials, or probes. Some typical infrared images are presented and interpreted using results of pressure distribution measurements, hot-film measurements, and surface oil flow visualizations.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3