A Novel Non-Contact Method for Monitoring the Acoustic Emission From Mixed Elastohydrodynamic Lubrication Contacts

Author:

Hutt S.1,Clarke A.1,Evans H. P.1

Affiliation:

1. Queen's Buildings Cardiff School of Engineering, , The Parade, Cardiff CF24 3AA , UK

Abstract

Abstract Lubricated non-conformal contacts, such as between gear teeth, operate with high levels of mixed lubrication, where the amount of direct asperity contact depends on operating parameters that influence the film thickness. Understanding of the levels of surface interaction is key to optimizing component life, and there is considerable interest in sensitive monitoring methods such as Acoustic Emission (AE). Researchers have shown that AE can detect subtle changes in lubrication conditions, using sensors mounted directly on the rotating gears. However, the use of such sensors is complex and unsuitable for implementation in real gearboxes. The alternative, of using sensors placed on housings, is hampered by signal attenuation and noise. This paper presents a novel, non-contact stationary sensor, coupled by an oil film to the rotating gear, which is shown to be capable of detecting important changes in lubrication conditions with significantly higher consistency and precision than housing-mounted sensors, whilst avoiding the complexities of gear-mounted sensors.

Funder

Engineering and Physical Sciences Research Council

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3