An Assessment of Statistical Theory of Contact Between Macroscopically Conforming Rough Surfaces

Author:

Farhang K.1,Hua D. Y.2,Wang P.2,Li Y.3

Affiliation:

1. Southern Illinois University at Carbondale, Carbondale, IL

2. Caterpillar, Inc., Peoria, IL

3. Massachusetts Institute of Technology, Cambridge, MA

Abstract

Most engineering surfaces possess topographies that are anisotropic. Some of the anisotropic surfaces are unintended result of machining process and others are by design for the purpose of lubricant retention or other considerations. Such is the case in problems involving piston liner and mechanical seal performance wherein the conformal contact of two rough surfaces is considered. It becomes critical to component performance to predict average contact pressure and gap between rough surfaces. Two of the well-known asperity-based statistical theories along with a deterministic method, based on Multi Level Multi Summation (MLMS) technique, are used to study the contact of nominally flat rough surfaces. The asperity-based statistical theories are GW model (Greenwood and Williamson, [1]), and its extension proposed by Chang, Bogy and Etsion [2], CEB model, for treating elastic-plastic contact. The contact examined is a set of nominally flat rough surfaces with a smooth flat. This study attempts to address two questions. The first concerns the effectiveness of asperity-based statistical theories in predicting average contact stress of rough surfaces with various degrees of topographic anisotropy. The second question involves the use of directional curvatures to ascertain the appropriateness of plane curvatures when degree of anisotropy is significant. To this end random surfaces are generated for five degrees of anisotropy including correlation length ratios 1, corresponding to an isotropic surface, and 3, 9, 36 and 81, corresponding to an increasing degree of geometric anisotropy. A module of Surface Distress Analytical Toolset (SDAT), for treating dry contact using deterministic approach with MLMS technique, is utilized to compute the contact pressure for these surfaces. This analysis constitutes ten surfaces for each correlation ratio resulting in fifty simulations of SDAT. For each correlation ratio statistical averages and variations of the maximum and mean contact pressures are found. Using the generated random surfaces, GW and CEB models are furnished with the parameters that include the standard deviation of summit height distribution, area summit density and six curvatures associated with asperity summit. These involve four directional curvatures that include curvatures along the x, y, positive diagonal, negative diagonal, and two equivalent curvatures, one based on spherical tip using average of the four diagonal curvatures and the other based on ellipsoidal asperity summit (Fig 1). The study suggests that GW and CEB typically overestimate average contact pressure. The mean pressures predicted using the largest directional summit curvature agrees most favorably with those predicted by SDAT. Surprisingly, agreement is most favorable for highest geometrical anisotropy. Both statistical methods seem effective in predicting mean gap between surfaces for moderate to low nominal pressures.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tribology of Plastic Working Processes;Journal of the Japan Society for Technology of Plasticity;2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3