Lubrication and Dynamic Characteristics of a Cylinder Block in an Axial Piston Pump

Author:

Ahn S. Y.1,Rhim Y. C.1,Hong Y. S.2

Affiliation:

1. Yonsei University, Seoul, Korea

2. Hankuk Aviation University

Abstract

Lubrication characteristics between a cylinder block and a valve plate in axial piston pumps play an important role in volumetric efficiency and durability of a hydraulic unit. In this paper, the finite element method is used for the computation of the pressure distribution between a cylinder block and a valve plate of the axial piston pump. Also, the Runge-Kutta method is applied to simulate the dynamics of a cylinder block of three-degrees of freedom motion. From the results of computation, two major conclusions are drawn. One is related to the fluid film characteristics between a cylinder block and a valve plate, and the other is related to the average leakage flow rate which is determined by the pressure gradient and the clearance near the discharge port. To confirm results of numerical simulation of cylinder block dynamics, experiment is conducted using three eddy-current type gap sensors, which are imbedded at the pump housing. Finally, a revised shape of a valve plate is proposed which increases the stability of the cylinder block dynamics and the volumetric efficiency of the pump based on numerical simulation.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study on the characteristics of oil film load capacity for axial piston pump;Australian Journal of Mechanical Engineering;2018-06-18

2. Generic Modeling and Control of an Open-Circuit Piston Pump—Part I: Theoretical Model and Analysis;Journal of Dynamic Systems, Measurement, and Control;2016-02-15

3. Robust Design of Piston Assemblies in an Axial Piston Pump;International Journal of Fluid Power;2014-05-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3