Experimental and Theoretical Evaluation of Simultaneous Piston Assembly, Valve Train and Engine Bearing Friction in a Fired Engine

Author:

Mufti Riaz A.1,Priest Martin1

Affiliation:

1. University of Leeds, Leeds, UK

Abstract

Engineers are constantly challenged to develop advanced products to meet more demanding emissions and fuel economy targets. In the past 20 years the automotive industry has greatly improved vehicle fuel efficiency by detailed engine component design improvement and formulating compatible lubricants, heavily relying on the computer based analytical tools. The sophistication and other complexity of these tools are growing rapidly. It is therefore important that the models, on which these techniques are based, are validated and continually improved by experimental techniques. For validating a predictive friction model, very accurate friction force data is required. Truly representative results can only be obtained if experiments are undertaken on a real fired engine and the friction loss in each component is recorded. The main aim of this research work is to validate an engine friction mathematical model called FLAME (Friction and Lubrication Analysis Model for Engines), over a range of load, engine speeds and lubricant temperatures, using 0W20 lubricant. The model was developed in a separate study and comprises of three parts, addressing each of the main tribological components (piston assembly, valve train and engine bearings). The validation was carried out by characterising the frictional losses generated from the major tribological components of a real fired engine. This was achieved by experimentally determining simultaneously the power loss in each component of a single cylinder, four valve, Ricardo Hydra gasoline engine under fired conditions.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3