Affiliation:
1. University of Minnesota, Minneapolis, Minn.
Abstract
Consideration is given to the fully developed heat-transfer characteristics of laminar flows in converging and diverging plane-walled passages. The analysis is carried out for the two fundamental thermal boundary conditions of prescribed wall heat flux and prescribed wall temperature. As a prelude to the heat-transfer analysis, a new solution for the velocity distribution is derived on the basis of a linearized momentum equation. The Nusselt number for flow in tapered passages is found to depend on the Reynolds number; this is in contrast to the situation for passages of longitudinally unchanging cross section wherein the Nusselt number is independent of the Reynolds number. In general, the Nusselt number for flow in a plane-walled diverging passage falls below that for the parallel-plate channel, while the Nusselt number for a converging flow is usually higher than that for a parallel-plate channel. Moreover, the fully developed Nusselt numbers for prescribed wall heat flux exceed those for prescribed wall temperature.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献