Characterization of the Dominant Structural Vibration of Hearing Aid Receivers

Author:

Varanda B. R.1,Miles R. N.2,Warren D.3

Affiliation:

1. Department of Mechanical Engineering, State University of New York at Binghamton, 4400 Vestal Parkway East, Binghamton, NY 13902 e-mail:

2. Department of Mechanical Engineering, State University of New York at Binghamton, 4400 Vestal Parkway East, Binghamton, NY 13902

3. Knowles Corporation, 1151 Maplewood Drive, Itasca, IL 60143

Abstract

Results are presented of an analysis and characterization of the mechanical vibration of hearing aid receivers, a key electroacoustic component of hearing aids. The function of a receiver in a hearing aid is to provide an amplified sound signal into the ear canal. Unfortunately, as the receiver produces sound, it also undergoes vibration which can be transmitted through the hearing aid package to the microphones, resulting in undesirable feedback oscillations. To better understand and control this important source of feedback in hearing aids, a rigid body model is proposed to describe the essential dynamic features of the system. The receiver is represented by two hinged rigid bodies, under an equal and opposite dynamic moment load, and connected to each other by a torsional spring and damper. A method is presented to estimate the parameters for the proposed model using experimental data. The data were collected from translational velocity measurements using a scanning laser vibrometer of a Knowles ED-series receiver supported on a complaint foundation. Excellent agreement is shown between results obtained using the analytical model and the measured translation and rotation of an independent receiver. It is concluded that a dynamic model of the receiver must account for both rotation and translation of the structure in order to properly describe its motion due to an input current.

Publisher

ASME International

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3