Variation of Performance of Dye-Sensitized Solar Cells With the Salt Concentration of the Electrolyte

Author:

Bandarabnayake C. M.1,Samarakkody G. S.1,Perera K. S.2,Vidanapathirana K. P.2

Affiliation:

1. Department of Electronics, Wayamba University of Sri Lanka, Kuliyapitiya 60200, Sri Lanka

2. Department of Electronics, Wayamba University of Sri Lanka, Kuliyapitiya 60200, Sri Lanka e-mail:

Abstract

Dye-sensitized solar cells (DSSCs) have been identified as a viable alternative for conventional solar cells. As liquid electrolyte based DSSCs have several drawbacks, attention has now been diverted toward gel polymer electrolytes (GPEs), which can be placed in between liquid electrolytes and solid electrolytes. In this study, attempts were made to investigate the effect of salt concentration of the GPE on the performance of DSSCs. The GPE used for the study consists of polyvinylidene fluoride (PVdF), ethylene carbonate (EC), propylene carbonate (PC), 1-methyl 3-propyl immidazolium iodide (1M3PII), and iodine (I2). Conductivity variation with salt concentration as well as with temperature was first investigated. DSSCs were then fabricated for all the salt concentrations to observe the relationship between salt concentration, conductivity, and performances of DSSCs. The composition 1.6 PVdF/4 EC/4 PC/1.3 1M3PII/0.1308 I2 (weight basis) exhibited the highest conductivity, and it was 3.55 × 10−3 S cm−1 at 28 °C. The sample was an anionic conductor. DSSCs fabricated with the samples having different salt concentrations showed that current density (JSC), fill factor (FF), and efficiency (η) follow the same variation that exists between conductivity and salt concentration. Open circuit voltage (VOC) seemed to be not depending on the conductivity and salt concentration very much.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3