Spinel Settling in HLW Melters

Author:

Matyáš Josef1,Kloužek Jaroslav1,Němec Lubomír1,Trochta Miroslav2

Affiliation:

1. Laboratory of Inorganic Materials of the Institute of Inorganic Chemistry Academy of Sciences of the Czech Republic and the Institute of Chemical Technology, Prague, Czech Republic

2. Glass Service, s.c., Vsetín, Czech Republic

Abstract

Abstract The efficiency of high-level waste (HLW) melters is limited by spinel settling and accumulation on the melter bottom if the waste loading is increased above a certain limit at which spinel crystallizes from the melt. Spinel accumulation interferes with melter operation and shortens melter lifetime. The mathematical modeling of spinel settling in a HLW melter was applied to define the critical level of spinel deposition during the lifetime of the melter and the corresponding increase in waste loading. In this study, spinel settled on the bottom, slant melter walls, and in the output pipe with a linear growth of spinel-sludge thickness after its concentration stabilized inside the melter. The calculations provided a higher concentration of spinel crystals in the melter regions where the temperature was lower then the liquidus temperature, i.e., T<TL. The effects of the following parameters on sludge-layer thickness were examined: 1) the impact of input concentration of spinel crystals of the same size, 2) the impact of different input size of spinel crystals of the same concentration entering from cold cap (melting batch on the melt surface), and 3) the influence of the average temperature (Tavg) inside of the melting space. The calculations showed that higher a concentration and bigger crystals caused thicker sludge layers in the melter, either because of a higher settling density of crystals or because of their higher settling rate. The nucleation of spinel crystals plays a more important role with decreasing of average temperature inside of the melter, and the thicker layer was formed at lower average temperatures.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3