A New Sampling Approach for the Multi-Scale Design of Metallic Materials

Author:

Acar Pinar1

Affiliation:

1. Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061

Abstract

Abstract We present a new sampling method for the multi-scale design of polycrystalline materials, which improves the computational time efficiency compared to the existing computational approaches. The solution strategy aims to find microstructure designs that optimize component-scale mechanical properties. The microstructure is represented with a probabilistic texture descriptor that quantifies the volume fractions of different crystallographic orientations. However, the original microstructure design space is high-dimensional and thus optimization in this domain is not favorable. Instead, we generate property closures, which are the reduced spaces of volume-averaged material properties that are computed in terms of the microstructural texture descriptors. We observe that the traditional design approaches which are based on sampling in the original microstructure space and sampling on the property closure are inefficient as they lead to highly concentrated design samples in the solution space. Therefore, we introduce a new sampling method in the property closure, which creates simplexes using the triangulation of the property hull and then generating samples for each simplex. Example problems include the optimization of Galfenol and α-titanium microstructures to improve non-linear material properties. The new sampling approach is shown to obtain better solutions while decreasing the required computational time compared to the previous microstructure design methods.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference48 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3