Affiliation:
1. Engineering Physics Department, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8 e-mail:
2. Engineering Physics Department, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8
Abstract
The Canadian supercritical water-cooled reactor (SCWR) design is part of Canada's Generation IV reactor development program. The reactor uses batch fueling, light water above the thermodynamic critical point as a coolant and a heavy water moderator. The design has evolved considerably and is currently at the conceptual design level. As a result of batch fueling, a certain amount of excess reactivity is loaded at the beginning of each fueling cycle. This excess reactivity must be controlled using a combination of burnable neutron poisons in the fuel, moderator poisons, and control blades interspersed in the heavy water moderator. Recent studies have shown that the combination of power density, high coolant temperatures, and reactivity management can lead to high maximum cladding surface temperatures (MCST) and maximum fuel centerline temperatures (MFCLT) in this design. This study focuses on improving both the MCST and the MFCLT through modifications of the conceptual design including changes from a 3 to 4 batch fueling cycle, a slightly shortened fuel cycle (although exit burnup remains the same), axial graded fuel enrichment, fuel-integrated burnable neutron absorbers, lower reactivity control blades, and lower reactor thermal powers as compared to the original conceptual design. The optimal blade positions throughout the fuel cycle were determined so as to minimize the MCST and MFCLT using a genetic algorithm and the reactor physics code PARCS. The final design was analyzed using a fully coupled PARCS-RELAP5/SCDAPSIM/MOD4.0 model to accurately predict the MCST as a function of time during a fueling cycle.
Subject
Nuclear Energy and Engineering,Radiation
Reference52 articles.
1. Leung, L. K. H., Yetisir, M., Diamond, W., Martin, D., Pencer, J., Hyland, B., Hamilton, H., Guzonas, D., and Duffey, R., 2011, “A Next Generation Heavy Water Nuclear Reactor With Supercritical Water as Coolant,” International Conference on Future of Heavy Water Reactors (HWR-FUTURE), Ottawa, ON, Canada, Oct. 2–5, Paper No. 042.https://inis.iaea.org/search/search.aspx?orig_q=RN:45091493
2. Coupled 3D Neutron Kinetics and Thermalhydraulics Characteristics of the Canadian Supercritical Water Reactor;Nucl. Eng. Des.,2016
3. Improved Single Pass Core Design for High Temperature Super LWR;Nucl. Eng. Des.,2014
4. Development of a Coupled Neutronic/Thermal-Hydraulic Tool With Multi-Scale Capabilities and Applications to HPLWR Core Analysis;Nucl. Eng. Des.,2011
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献