Transient Development of Flame and Soot Distribution in Laminar Diffusion Flame With Preheated Air

Author:

Mandal Bijan Kumar1,Sarkar Amitava2,Datta Amitava3

Affiliation:

1. Department of Mechanical Engineering, Bengal Engineering and Science University, Shibpur, Howrah, 711109, India

2. Department of Mechanical Engineering, Jadavpur University, Kolkata 700032, India

3. Department of Power Engineering, Jadavpur University, Salt Lake Campus, Kolkata 700098, India

Abstract

A numerical investigation of the transient development of flame and soot distributions in a laminar axisymmetric coflowing diffusion flame of methane in air has been carried out considering the air preheating effect. The gas phase conservation equations of mass, momentum, energy, and species concentrations along with the conservation equations of soot mass concentration and number density are solved simultaneously, with appropriate boundary conditions, by an explicit finite difference method. Average soot diameters are then calculated from these results. It is observed that the soot is formed in the flame when the temperature exceeds 1300 K. The contribution of surface growth toward soot formation is more significant compared with that of nucleation. Once the soot particles reach the high temperature oxygen-enriched zone beyond the flame, the soot oxidation becomes important. During the initial period, when soot oxidation is not contributing significantly, some of the soot particles escape into the atmosphere. However, under steady condition the exhaust product gas is nonsooty. Preheating of air increases the soot volume fraction significantly. This is both due to more number of soot particles and the increase in the average diameter. However, preheating of air does not cause a qualitative difference in the development of the soot-laden zone during the flame transient period.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3