Nonparametric Identification of Nonlinear Piezoelectric Mechanical Systems

Author:

Yuan Tian-Chen1,Yang Jian2,Chen Li-Qun3

Affiliation:

1. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China

2. School of Urban Railway Transportation, Shanghai University of Engineering Science, Shanghai 201620, China

3. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China; Department of Mechanics, Shanghai University, 99 Shang Da Road, Shanghai 200444, China; Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China e-mail:

Abstract

Two novel nonparametric identification approaches are proposed for piezoelectric mechanical systems. The novelty of the approaches is using not only mechanical signals but also electric signals. The expressions for unknown mechanical and electric terms are given based on the Hilbert transform. The signals are decomposed and re-assembled to obtain smooth stiffness and damping curves. The current mapping approach is developed to identify accurately a piezoelectric mechanical system with strongly nonlinear electric terms. The developed identification approaches are successfully implemented to simulate signals obtained from different nonlinear piezoelectric mechanical systems, including Duffing nonlinearity, softening and hardening nonlinearity, and Duffing nonlinearity with strong nonlinear electric terms. The proposed approaches are successfully applied to experimental signals of a circular laminated plate device in order to identify the nonlinear stiffness functions, damping functions, electromechanical coupling functions, and equivalent capacitance functions. The results show both softening and hardening nonlinearity in the stiffness characteristic and weak nonlinearity in electric characteristics. The results of the Hilbert transform based approach and the current mapping approach are compared, and the outcomes show good agreements.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3