Computational Fluid Dynamic Study for aTAA Hemodynamics: An Integrated Image-Based and Radial Basis Functions Mesh Morphing Approach

Author:

Capellini Katia1,Vignali Emanuele2,Costa Emiliano3,Gasparotti Emanuele2,Biancolini Marco Evangelos4,Landini Luigi5,Positano Vincenzo2,Celi Simona2

Affiliation:

1. BioCardioLab, Fondazione CNR-Regione Toscana “G. Monasterio,” Ospedale del Cuore, Via Aurelia Sud, Massa 54100, Italy e-mail:

2. BioCardioLab, Fondazione CNR-Regione Toscana “G. Monasterio,” Ospedale del Cuore, Via Aurelia Sud, Massa 54100, Italy

3. RINA Consulting S.p.A., Viale Cesare Pavese, 305, Roma 00144, Italy

4. Department of Enterprise Engineering, University of Rome Tor Vergata, Via del Politecnico 1, Roma 00133, Italy

5. Department of Information Engineering, University of Pisa, Via Girolamo Caruso, 16, Pisa 56122, Italy

Abstract

We present a novel framework for the fluid dynamics analysis of healthy subjects and patients affected by ascending thoracic aorta aneurysm (aTAA). Our aim is to obtain indications about the effect of a bulge on the hemodynamic environment at different enlargements. Three-dimensional (3D) surface models defined from healthy subjects and patients with aTAA, selected for surgical repair, were generated. A representative shape model for both healthy and pathological groups has been identified. A morphing technique based on radial basis functions (RBF) was applied to mold the shape relative to healthy patient into the representative shape of aTAA dataset to enable the parametric simulation of the aTAA formation. Computational fluid dynamics (CFD) simulations were performed by means of a finite volume solver using the mean boundary conditions obtained from three-dimensional (PC-MRI) acquisition. Blood flow helicity and flow descriptors were assessed for all the investigated models. The feasibility of the proposed integrated approach pertaining the coupling between an RBF morphing technique and CFD simulation for aTAA was demonstrated. Significant hemodynamic changes appear at the 60% of the bulge progression. An impingement of the flow toward the bulge was observed by analyzing the normalized flow eccentricity (NFE) index.

Funder

Ministero della Salute

Regione Toscana

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3