Affiliation:
1. Department of Mechanical Engineering, The University of California at Berkeley, Berkeley, CA 94720
Abstract
A numerical investigation was undertaken to characterize the laminar flow and heat transfer in axisymmetric coaxial corotating shrouded disk configurations. Attention was focused on calculation conditions favoring steady, stable, symmetric solutions of the conservation equations. The justification for this is based on velocity measurements obtained in a test section that matches the numerical configuration. Calculations were performed to investigate the dependence of the flow characteristics on disk angular velocity, disk spacing, and the disk–shroud gap width. Conditions involving a radial throughflow (blowing) and/or an axially directed disk–shroud gap flow were also predicted. In the region of the shroud the results show a strong sensitivity of the flow and heat transfer to variations in the flow Reynolds number (rotation) and Rossby number (blowing). By contrast, the flow was found to be less dependent on the disk spacing and the disk–shroud gap width for the conditions investigated. The introduction of an axially directed disk–shroud gap flow significantly alters the flow and heat transfer characteristics in the region between two disks. This finding is important for the improved design and control of corotating disk systems.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献