Palpation Sensitivity of an Embedded Nodule Using the Finite Element Method

Author:

Mukherjee Abhishek1,Gupta Abhishek2,Sen Shamik3,Yan Wenyi4,Saigal Anil5,Singh Ramesh K.2

Affiliation:

1. IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai 400076, India

2. Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India

3. Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India

4. Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3800, Australia

5. Department of Mechanical Engineering, Tufts University, 212 College Avenue, Medford, MA 02155

Abstract

Abstract A physician palpates a tissue to detect an embedded tumor nodule by sensing an increase in local tissue stiffness and nodule size. The Hertz contact model, however, is unable to predict the material or physical properties of a tumor nodule embedded in a healthy tissue of finite thickness. In this study, utilizing a hyperelastic material model, we propose a general methodology to analyze the extent to which the stiffness, size, and depth of a nodule embedded in a tissue affect its detectability. Using dimensional analysis, we generate simple power-law relations to predict physical and material properties of tumor nodules embedded in healthy tissue during indentation. Our results indicate that indenter radius and indentation depth are critical parameters in nodule detection and a thin indenter and large indentation depth increase detection sensitivity of an embedded tumor nodule. Our results also show that anisotropic material properties of either a tissue or an embedded nodule render the embedded tumor nodule undetectable using indentation. We define palpation sensitivity maps that can be used to predict material and physical properties of tumor nodules in healthy tissues. The analysis and results presented in this study might increase accuracy and precision in instrumented probe-based laparoscopic or robotic surgeries.

Publisher

ASME International

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3