Affiliation:
1. Siemens-Energy AG, Mülheim an der Ruhr 45468, Germany
Abstract
Abstract
This paper focuses on the inverse finite element analysis (FEA) to calculate the small punch technique (SPT) tests and the prediction of the tensile and fracture toughness behavior. For the description of the SPT tests via FEA, the hardening rule of Ramberg–Osgood (RO) and the damage model of Gursson–Tvergaard–Needleman (GTN) were used. The inverse FEA optimization process cannot provide a unique solution for the 12 parameters included in the material model. This results from a dependency between some parameters, which leads to the same solution in the optimization. Hence, a novel description of the dependent parameters was developed and implemented within the optimization process. Therefore, an enhanced inverse FEA approach was proposed, which provides a fast converging solution for determination of the material model parameters. Within this study, the forged turbine shaft material EN: 27NiCrMoV15-6 was investigated. For comparison purpose, SPT tests as well as tensile tests and fracture toughness tests were carried out. In the case of the tensile properties, the test and simulation show coincidence in the curve and the characteristic values. For the toughness behavior, the characteristic value of the test was met by the simulation.
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献