Time-Accurate Euler Simulation of Interaction of Nozzle Wake and Secondary Flow With Rotor Blade in an Axial Turbine Stage Using Nonreflecting Boundary Conditions

Author:

Fan S.1,Lakshminarayana B.1

Affiliation:

1. Center for Gas Turbine and Power, Pennsylvania State University, University Park, PA

Abstract

The objective of this paper is to investigate the three-dimensional unsteady flow interactions in a turbomachine stage. A three-dimensional time-accurate Euler code has been developed using an explicit four-stage Runge–Kutta scheme. Three-dimensional unsteady nonreflecting boundary conditions are formulated at the inlet and the outlet of the computational domain to remove the spurious numerical reflections. The three-dimensional code is first validated for two-dimensional and three-dimensional cascades with harmonic vortical inlet distortions. The effectiveness of the nonreflecting boundary conditions is demonstrated. The unsteady Euler solver is then used to simulate the propagation of nozzle wake and secondary flow through the rotor and the resulting unsteady pressure field in an axial turbine stage. The three-dimensional and time-dependent propagation of nozzle wakes in the rotor blade row and the effects of nozzle secondary flow on the rotor unsteady surface pressure and passage flow field are studied. It was found that the unsteady flow field in the rotor is highly three dimensional and the nozzle secondary flow has significant contribution to the unsteady pressure on the blade surfaces. Even though the steady flow at the midspan is nearly two dimensional, the unsteady flow is three dimensional and the unsteady pressure distribution cannot be predicted by a two-dimensional analysis.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3