On the Interaction of Swirling Flames in a Lean Premixed Combustor

Author:

Ramachandran Gopakumar1,Dutta Ankit Kumar1,Durairaj Harish1,Chaudhuri Swetaprovo1

Affiliation:

1. Department of Aerospace Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India

Abstract

Abstract Premixed or partially premixed swirling flames are widely used in gas turbine applications because of their compactness, high ignition efficiency, low NOx emissions and flame stability. A typical annular combustor consists of about twenty swirling flames, which interact (directly or indirectly) with their immediate neighbors even during stable operation. These interactions significantly alter the flow and flame topologies thereby bringing in some discrepancies between the single nozzle (SN) and multinozzle (MN), ignition, emission, pattern factor and flame transfer function (FTF) characteristics. For example, in MN configurations, application of a model based on SN FTF data could lead to erroneous conclusions. Due to the complexities involved in this problem in terms of size, thermal power, cost, optical accessibility etc., a limited amount of experimental studies has been reported, that too on scaled down models with reduced number of nozzles. Here, we present a detailed experimental study on the behavior of three interacting swirl premixed flames, arranged in-line in an optically accessible hollow cuboid test section, which closely resembles a three-cup sector of an annular gas turbine combustor with very large radius. Multiple configurations with various combinations of swirl levels between the adjacent nozzles and the associated flame and flow topologies have been studied. Spatio-temporal information of the heat release rate obtained from OH* chemiluminescence imaging is used along with the acoustic pressure signatures to compute the Rayleigh index (RI) so as to identify the regions within the flame that pumps energy into the self-excited thermoacoustic instability modes. It is found that the structure of the flame–flame interaction regions plays a dominant role in the resulting thermoacoustic instability. To resolve the flow and reactive species distributions in the interacting flames, two-dimensional (2D), three component stereoscopic particle image velocimetry (SPIV) and planar laser-induced fluorescence (PLIF) of hydroxyl radical is applied to all the test conditions. Significant differences in the flow structures among the different configurations were observed. Simultaneous OH-PLIF and SPIV techniques were also utilized to track the flame front, from which the curvature and stretch rates were computed. Flame surface density (FSD) which is defined as the mean surface area of the reaction zone per unit volume, is also computed for all the test cases. These measurements and analyses elucidate the structure of the interaction regions, their unique characteristics, and possible role in thermoacoustic instability.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flow and heat transfer characteristics of an impinging jet augmented with swirl;International Communications in Heat and Mass Transfer;2023-12

2. Blowoff Dynamics of Interacting Swirl Premixed Flames;AIAA SCITECH 2023 Forum;2023-01-19

3. Strong flame interaction-induced collective dynamics of multi-element lean-premixed hydrogen flames;International Journal of Hydrogen Energy;2023-01

4. Curvature Distribution of Lean-Premixed Mesoscale Multinozzle Hydrogen Flames;Journal of The Korean Society of Combustion;2021-03-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3