Numerical Investigation on the Effect of Tube Geometry and Feeder Height on the Heat Transfer Performance of Horizontal Tube Falling Film Evaporation

Author:

Balaji D.1,Velraj R.2,Ramana Murthy M. V.1

Affiliation:

1. Department of Ocean Structures, National Institute of Ocean Technology, Chennai 600100, India

2. Institute of Energy Studies, Anna University, Chennai 600025, India

Abstract

Abstract This paper discusses about the effect of tube geometry and liquid feeder height on the heat transfer performance of falling film evaporation over the horizontal heated plain tubes. To investigate this, a two-dimensional computational fluid dynamics (CFD) model was developed, compared, and validated with published data available in the literature. A numerical simulation was carried out for varying liquid load, tube diameter, liquid feeder height, and corresponding changes in the heat transfer co-efficient (HTC), and mass transfer rate was recorded and analyzed. An attempt was also made to measure the thickness of the film around the tubes from the simulation model. Mechanisms that control the factors such as HTC, film thickness, and mass transfer were numerically investigated and discussed in this work. Numerical results indicated that low value of liquid film thickness appears approximately at the angular position of the range between 90 deg and 125 deg. Also the numerical investigation revealed that liquid film thickness decreases and HTC and mass transfer rate increases with the increase of feeder height. No remarkable change in film thickness was observed with increase in the tube diameter. This numerical study also proved that the prediction of thermally developed boundary region on the circumference of the tube could be possible in terms of mass transfer rate. It was also observed from the numerical study that the highest mass transfer rate takes place between the angle 135–165 deg near to the bottom of the tube.

Funder

DST - Indian Solar Energy Harnessing Centre

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3