Similarity Transformations for Compressor Blading

Author:

Zhu N. G.1,Xu L.1,Chen M. Z.1

Affiliation:

1. Beijing University of Aeronautics and Astronautics, Beijing, China

Abstract

Improving the performance of high speed axial compressors through low speed model compressor testing has proved to be economical and effective (Wisler, 1984). The key to this technique is to design low speed blade profiles which are aerodynamically similar to their high speed counterparts. The conventional aerodynamic similarity transformation involves the small disturbance potential flow assumption therefore its application is severely limited and generally not used in practical design. In this paper, a set of higher order transformation rules are presented which can accommodate large disturbances at transonic speed and are therefore applicable to similar transformations between the high speed HP compressor and its low speed model. Local linearization is used in the non–linear equations and the transformation is obtained in an iterative process. The transformation gives the global blading parameters such as camber, incidence and solidity as well as the blade profile. Both numerical and experimental validations of the transformation show that the non–linear similarity transformations do retain satisfactory accuracy for highly loaded blades up to low transonic speeds. Further improvement can be made by only slightly modifing profiles numerically without altering the global similarity parameters.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Laplacian Equivalents to Subsonic Cascade Flows;47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition;2009-01-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3