Numerical Study on the Thermal Interaction of Gas-Particle Transport for a Vortex Flow Solar Reactor

Author:

Ozalp Nesrin1,JayaKrishna D.1

Affiliation:

1. Texas A&M University at Qatar, Doha, Qatar

Abstract

Solar reactors, by nature of their high temperature, are nearly experimentally inaccessible. Most instruments capable of measuring fluid flow cannot survive the harsh temperatures inside the reactor. As such, computational fluid dynamics (CFD) has been relied on to provide insight into the flow within the reactor. Because of the size of the computing resources necessary to properly account for all of the physical mechanisms within the solar reactor, the current state of numerical simulations only provide a limited level of insight. The present study provides an analysis of flow behavior and thermal interaction of gas-particle flow for a directly irradiated vortex flow solar reactor. The thermal hydraulics between gas flow and particle has been considered by two way coupled Euler-Lagrange approach. A two band discrete ordinate (DO) model has been considered to solve radiative transport between walls and entrained particles. The effect of main flow, secondary flow, particle loading, particle diameter and residence time are studied to analyze flow physics and heat transfer. Results are presented in terms of static temperature contours, temperature distribution along the center line of the cavity, path lines and particle temperature. It is observed that with the increase in main flow, secondary flow and particle diameter average outlet temperature of the fluid increases, and with the increase in particle loading the outlet temperature decreases. The particle exit temperature is observed to increase with the increase in residence time.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3