Effect of High Temperatures and Heating Rates on High Strength Concrete for Use as Thermal Energy Storage

Author:

John Emerson E.1,Hale W. Micah1,Selvam R. Panneer1

Affiliation:

1. University of Arkansas, Fayetteville, AR

Abstract

In recent years due to rising energy costs as well as an increased interest in the reduction of greenhouse gas emissions, there is great interest in developing alternative sources of energy. One of the most viable alternative energy resources is solar energy. Concentrating solar power (CSP) technologies have been identified as an option for meeting utility needs in the U.S. Southwest. Areas where CSP technologies can be improved are improved heat transfer fluid (HTF) and improved methods of thermal energy storage (TES). One viable option for TES storage media is concrete. The material costs of concrete can be very inexpensive and the costs/ kWhthermal, which is based on the operating temperature, are reported to be approximately $1. Researchers using concrete as a TES storage media have achieved maximum operating temperatures of 400°C. However, there are concerns for using concrete as the TES medium, and these concerns center on the effects and the limitations that the high temperatures may have on the concrete. As the concrete temperature increases, decomposition of the calcium hydroxide (CH) occurs at 500°C, and there is significant strength loss due to degeneration of the calcium silicate hydrates (C-S-H). Additionally concrete exposed to high temperatures has a propensity to spall explosively. This proposed paper examines the effect of heating rates on high performance concrete mixtures. Concrete mixtures with water to cementitious material ratios (w/cm) of 0.15 to 0.30 and compressive strengths of up to 180 MPa (26 ksi) were cast and subjected to heating rates of 3, 5, 7, and 9° C/min. These concrete mixtures are to be used in tests modules where molten salt is used as the heat transfer fluid. Molten salt becomes liquid at temperatures exceeding 220°C and therefore the concrete will be exposed to high initial temperatures and subsequently at controlled heating rates up to desired operating temperatures. Preliminary results consistently show that concrete mixtures without polypropylene fibres (PP) cannot resist temperatures beyond 500° C, regardless of the heating rate employed. These mixtures spall at higher temperatures when heated at a faster rate (7° C/min). Additionally, mixtures which incorporate PP fibres can withstand temperatures up to 600° C without spalling irrespective of the heating rate.

Publisher

ASMEDC

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3