A Parametric Study of the Impact of Various Error Contributions on the Flux Distribution of a Solar Dish Concentrator

Author:

Andraka Charles E.1,Yellowhair Julius1,Iverson Brian D.1

Affiliation:

1. Sandia National Laboratories, Albuquerque, NM

Abstract

Dish concentrators can produce highly concentrated flux for the operation of an engine, a chemical process, or other energy converter. The high concentration allows a small aperture to control thermal losses, and permits high temperature processes at the focal point. A variety of optical errors can influence the flux pattern both at the aperture and at the absorber surface. Impacts of these errors can be lost energy (intercept losses), aperture compromise (increased size to accommodate flux), high peak fluxes (leading to part failure or life reduction), and improperly positioned flux also leading to component failure. Optical errors can include small scale facet errors (“waviness”), facet shape errors, alignment (facet pointing) errors, structural deflections, and tracking errors. The errors may be random in nature, or may be systematic. The various sources of errors are often combined in a “root-mean-squared” process to present a single number as an “error budget”. However, this approach ignores the fact that various errors can influence the performance in different ways, and can mislead the designer, leading to component damage in a system or poor system performance. In this paper, we model a hypothetical radial gore dish system using Sandia’s CIRCE2 optical code. We evaluate the peak flux and incident power through the aperture and onto various parts of the receiver cavity. We explore the impact of different error sources on the character of the flux pattern, and demonstrate the limitations of lumping all of the errors into a single error budget.

Publisher

ASMEDC

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Steam and electrical power generation by a hybrid photovoltaic/parabolic dish concentrator using beam splitter technology;International Journal of Energy Research;2022-04-29

2. Solar Dish Systems;Encyclopedia of Sustainability Science and Technology Series;2022

3. Enabling open sun cooling method-based estimation of effective concentration factor/ratio for concentrating type solar cookers;Solar Energy;2021-10

4. Solar Dish Systems;Encyclopedia of Sustainability Science and Technology;2021

5. Inverse Analysis of Radiative Flux Maps for the Characterization of High Flux Sources;Journal of Solar Energy Engineering;2019-01-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3