Actual Tooth Contact Analysis of Straight Bevel Gears

Author:

Kolivand M.1,Ligata H.2,Steyer G.3,Benedict D. K.3,Chen J.3

Affiliation:

1. American Axle & Manufacturing, Inc., 1 Dauch Drive, Detroit, MI 48211 e-mail:

2. General Electric, Global Research Center, 1 Research Cir, Schenectady, NY 12309

3. American Axle & Manufacturing, Inc., 1 Dauch Drive, Detroit, MI 48211

Abstract

Theoretically, spherical involutes are used as one of the base topographies for straight bevel gears. Actual bevel gears, however, have deviations from their intended topographies due to manufacturing errors, heat treatment deviations, and finishing processes. Measuring the physical parts with coordinate measuring machines (CMMs), this study proposes a new approach to capture such deviations. The measured deviations from spherical involute are expressed in form of a third-order two-dimensional (2D) polynomial function and added to the base topography to duplicate the geometry of the actual part; tooth thickness deviation is also accounted for and corrected through changing the theoretical tooth thickness. The resultant surfaces are then used to construct ease-off and surface of roll angle topographies and to perform tooth contact analysis (TCA) and calculate motion transmission error (TE). At the end a sample straight bevel gear set is measured and utilizing the proposed approach its predicted TCA is compared to the experimental TCA obtained from roll tester. The results show very good correlation between the predicted and actual TCA of the parts. Utilizing the proposed methodology, the other bevel gear base profile geometries (such as octoids) can also be analyzed. In the proposed approach, the difference between other base geometries and spherical involutes can be treated as deviations from spherical involutes and can be taken into account to perform TCA.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference37 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3