Effects of Jet Obliquity on Hydraulic Jumps Formed by Impinging Circular Liquid Jets on a Moving Horizontal Plate

Author:

Kate R. P.1,Das P. K.1,Chakraborty Suman1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur 721302, India

Abstract

The present work attempts to investigate the effects of jet obliquity on the spatial patterns formed as a consequence of hydraulic jumps due to the impingement of circular liquid jets on continuously moving but nonaccelerating horizontal flat plates. Both the normal and the oblique impinging jets are considered, in order to characterize the contrasting features of the associated hydraulic jump mechanisms. Theoretical calculations are executed to obtain the locations of the jump, for different jet and plate velocities and jet inclination angles, using a depth-averaged momentum integral equation for shallow-free surface flows. Comparisons are subsequently made between the theoretical predictions and experimental observations reported in the literature, and a good agreement between these two can be observed. Special cases of a circular hydraulic jump when the target plate is stationary and the impinging jet is vertical, and elliptic hydraulic jumps when the target plate is stationary and the impinging jet is obliquely inclined, are also discussed. It is conjectured that flow due to impinging jets on a horizontal moving plate can be modeled as an equivalent flow due to an inclined impinging jet on stationary horizontal flat plates, with appropriate alterations in the jet velocity and the jet inclination angles.

Publisher

ASME International

Subject

Mechanical Engineering

Reference10 articles.

1. On Hydraulic Jumps;Kurihara;Rep. Research Institute for Fluid Engineering (Kyusyu Imperial University, “Ryutai Kougaku Kenkyusho Kiyou”)

2. The Spread of a Liquid Jet Over a Horizontal Plane;Watson;J. Fluid Mech.

3. Shallow-Water Approach to the Circular Hydraulic Jump;Bohr;J. Fluid Mech.

4. The Hydraulic Jump (“Shocks” and Viscous Flow in the Kitchen Sink);Godwin;Am. J. Phys.

5. On the Circular Hydraulic Jump;Brechet;Am. J. Phys.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3