Influence of Lateral Constraints on Wave Propagation in Finite Granular Crystals

Author:

Kocharyan Hrachya1,Karanjgaokar Nikhil1

Affiliation:

1. Department of Mechanical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609-2280

Abstract

Abstract In the presented work, wave dynamics of 2D finite granular crystals of polyurethane cylinders under low-velocity impact loading was investigated to gain better understanding of the influence of lateral constraints. The deformation of the individual grains in the granular crystals during the impact loading was recorded by a high-speed camera and digital image correlation (DIC) was used to calculate high fidelity kinematic and strain fields in each grain. These grain-scale kinematic and strain fields were utilized for the computation of the intergranular forces at each contact using a granular element method (GEM) based mathematical framework. Since the polyurethane were viscoelastic in nature, the viscoelasticity constitutive law was implemented in the GEM framework and it was shown that linear elasticity using the strain rate-dependent coefficient of elasticity is sufficient to use instead of a viscoelastic framework. These particle-scale kinematic and strain field measurements in conjunction with the interparticle forces also provided some interesting insight into the directional dependence of the wave scattering and attenuation in finite granular crystals. The directional nature of the wave propagation resulted in strong wave reflection from the walls. It was also noteworthy that the two reflected waves from the two opposite sidewalls result in destructive interference. These lateral constraints at different depths leads to significant differences in wave attenuation characteristics and the finite granular crystals can be divided into two regions: upper region, with exponential wave decay rate, and lower region, with higher decay rate.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3