Surface Temperature and Heat Transfer Conditions in the Ablation of Shear Thinning and Shear Thickening Liquids

Author:

Steverding B.1

Affiliation:

1. Physical Sciences Laboratory, Directorate of Research and Development, Army Missile Command, Redstone Arsenal, Ala.

Abstract

The heat and mass transfer conditions for the ablation of Newtonian liquids have been described in a number of excellent articles. However, little attention has been paid to the behavior of non-Newtonian liquids for which the viscosity is not only a function of temperature but also of shear rate. This is astonishing since many excellent ablators behave in a non-Newtonian manner, especially when they contain foreign particles such as gas bubbles. The purpose of this paper is to study changes in heat and mass transfer if the ablator has a shear rate dependent viscosity. As a result of this study it will be shown that deviations from normal Newtonian behavior increase with increasing shear stress and decreasing bluntness of the cone. Surface temperatures are calculated as a function of Mach number, degree of non-Newtonian viscosity parameter, nose radius, and altitude. Numerical results are given for a model substance with the physical characteristics of Pyrex glass but with a hypothetically varying degree of non-Newtonian viscosity behavior.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chapter 14: Mathematical Modeling of Heat and Mass Transfer during Aerothermochemical Destruction of Thermal Protection Materials;Hypersonic Aerodynamics and Heat Transfer;2013

2. HEAT TRANSFER;Industrial & Engineering Chemistry;1969-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3