Using Computational Fluid Dynamics to Analyze Convection in Pin-to-Plane Plasma Discharge

Author:

Galvez Robert1,Wright Kamau1,Milanovic Ivana1

Affiliation:

1. University of Hartford, West Hartford, CT

Abstract

Abstract Multiphysics simulations were conducted to model the role of naturally induced convection in heat and mass transport within a non-isothermal plasma discharge chamber. A pin-to-plane discharge into chamber containing carbon dioxide can be used to possibly decompose carbon dioxide. The present study characterizes the role that convection plays in the diffusion of various products such as ions and excited-state species throughout the test chamber. Multiphysics software including computational fluid dynamics was employed in a two-dimensional transient simulation of a closed reactor with a large pin serving as the cathode and a bottom plate serving as the anode. The mesh was adjusted to best capture important discharge phenomena, while the simulated time was varied to best characterize the chemical processes.. Mesh validation was undertaken using the relevant minimum sizes required by the plasma, fluid flow, and heat transfer solvers. The flow induced by natural convection from the discharge was then compared to the flow induced by natural convection around a resistance heater operating with the same power input as the plasma. The results of this simulation are used to inform improvements on a parallel experimental system used to study the discharge, such as placement of gas concentration sensors and to better understand the heat and mass transfer through the discharge.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulation-Supported Engineering Curriculum;2022 IEEE IFEES World Engineering Education Forum - Global Engineering Deans Council (WEEF-GEDC);2022-11-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3