Measurement and Prediction of the Residual Stress Field in an Autogenously Welded Stainless Steel Plate

Author:

Alizadeh Hassan1,Lewis Simon J.1,Gill Christopher2,Hossain S.1,Smith David J.1,Truman Christopher E.1

Affiliation:

1. University of Bristol, Bristol, UK

2. University of Manchester, Manchester, UK

Abstract

There has been a concerted effort over recent years to develop and refine finite element models of welds in order to predict residual stresses. These residual stresses are required to ever improved accuracies in order to provide continued confidence in the safe operation of ageing plant. Not only have computing hardware and software developed at a rapid rate, but guidelines for weld modelling ‘best practice’ have started to be documented. In order to validate and verify weld modelling procedures, test specimens are required which may be subjected to a suite of residual stress measurement techniques in order to allow comparison and ‘benchmarking’ of the numerical predictions. An abundance of such test specimens have been developed over the last few years. These are typically studied via large multi-national ‘round robins’ and results used to fine tune methodologies. A specific example is the NeT ‘bead on plate’ specimen [1, 2] which considered a single weld bead on an austenitic stainless steel plate. Whilst the major thrust worldwide now is to fabricate and study test specimens more representative of real plant, by considering larger specimens, many weld passes, different materials (including ferritic steels and their associated phase change during welding), the research presented in this paper considers an even simpler test specimen. Thus, an autogenous (no filler material) weld on a stainless steel plate is considered. There were two principal motivations for this work. Firstly, numerical and experimental results were required to validate analytical models of welding induced residual stresses. These analytical models [3] are currently under development but, to date, have been formulated only for parent material. Secondly, the lessons learned on weld modelling from previous studies were desired to be tested on the simplest test specimen available.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3