Prevention of Transformer Tank Explosion: Part 1 — Experimental Tests on Large Transformers

Author:

Muller Se´bastien1,Brady Ryan2,De Bressy Gae¨l1,Magnier Philippe2,Pe´rigaud Guillaume2

Affiliation:

1. SERGI Holding, Ache`res, France

2. TPC, Kingwood, TX

Abstract

Oil-filled transformer explosions are caused by low impedance faults that result in arcing in transformer tanks once the oil loses its dielectric properties. Within milliseconds, oil is then vaporized and the generated gas is pressurized because the liquid inertia prevents its expansion. The pressure difference between the gas bubbles and the surrounding liquid oil generates pressure waves, which propagate and interact with the tank. Then, the pressure peak reflections are building up the static pressure, which rises and leads to the tank explosion since tanks are not designed to withstand the resulting static pressure. This typical transformer incident is common. Indeed, conventional transformer protections are unable to react fast enough to prevent tank explosion that usually result in very expensive blackouts and fire damages for electricity facilities. This paper describes a transformer explosion prevention technology based on the direct mechanical response of a Depressurization Set to the tank inner dynamic pressure induced by electrical faults. Since transformers always rupture at their weakest point because of the static pressure increase, the Depressurization Set is designed to be this weakest point in term of inertia to break before the tank explodes. To evaluate its efficiency, experiments and computer simulations have been performed. Two experimental test campaigns were carried out, first by Electricite´ de France in 2002 and second, by CEPEL, Brazil, in 2004 on large scale transformers equipped with that prevention technology. These tests consisted in creating low impedance faults in oil filled transformer tanks. The 62 tests confirmed that the arc first creates a huge volume of gas that is quickly pressurized, generating one high pressure peak that propagates in the oil and activates the transformer protection within milliseconds before static pressure increases, thus preventing the tank explosion. Beside the experiments, a compressible two-phase flow numerical simulation tool was developed. The theoretical bases of this tool are presented in a parallel paper [1] and it is used here to study the pressure increase in an unprotected tank when subjected to an internal arcing which properties are similar to those used during the experiments. The fast tank depressurization induced by the transformer protection and its protective effects are thus highlighted.

Publisher

ASMEDC

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3