A Simulation Method to Estimate Nonparametric Distribution of Heterogeneous Consumer Preference From Market-Level Choice Data

Author:

Kang Changmuk1

Affiliation:

1. Assistant Professor Department of Industrial and Information Systems Engineering, Soongsil University, Seoul 06978, South Korea e-mail:

Abstract

In recent decision-based design trends, product design is optimized for maximizing utility to consumers. A discrete-choice analysis (DCA) model is a widely utilized tool for quantitatively assessing how consumers evaluate utility of a product. Ordinary DCA models specify utility as linear combination of attribute values of a product and coefficients that represent preference of consumers. Assuming that the coefficient value is heterogenous between individual consumers, this study proposes a method to estimate its nonparametric distribution using market-level data, which is the market share of existing products. Where consumers consider k attributes of a product, his/her preference is represented by a k-dimensional vector of coefficient values. This method simulates an empirical distribution of the vectors in k-dimensional space. The whole space is first fragmented by disjoint regions, vectors in which prefer a specific product than others, and then, random points are sampled in each region as much as market share of the corresponding product. In a sense that more points are sampled for a more popular product, the empirical distribution is population of preference vectors. This method is practically useful since it utilizes only market-level data, which are relatively easy to gather than individual-level choice instances. In addition, the simulation procedure is intuitive and easy to implement.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3