Shape Descriptor-Based Local Contour Profile Registration and Measurement for Flexible Automotive Sealing Strips

Author:

Li Jianhua1,Du Zhengchun2,Wang Yan3

Affiliation:

1. Department of Computer Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China e-mail:

2. Mem. ASME School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China e-mail:

3. Mem. ASME Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 813 Ferst Drive NW, Atlanta, GA 30332 e-mail:

Abstract

For vision-based measurement, there are few research or professional tools for local contour positional errors of flexible automotive rubber strips. To support the automatic measurement of contour positional errors, a novel local contour registration and measurement method based on shape descriptors is proposed. In this method, a shape descriptor is proposed to find correspondence between a reference local contour and a desired local contour. First, a shape descriptor that includes the shape representation and restrictions of the local contour is extracted from the reference contour. Second, several tolerable shape descriptors for a desired actual local contour are constructed by adding some loosening factors to the ideal descriptor, and an angular similarity-based searching strategy is used to find the best actual local contour. Finally, from the matched local point sets, a quantitative calculation step provides the desired deviation values. This method is implemented in a sealing strip cross section measurement system, and numerous cross-sectional profiles are tested. The experimental results verify the stability and effectiveness of the proposed method. Important progress toward the automatic measurement of flexible products is demonstrated.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3