Correlation of Interfacial Friction Coefficients for Predicting Countercurrent Flow Limitation at a Sharp-Edged Lower End of Vertical Pipes

Author:

Murase Michio1,Kusunoki Takayoshi2,Nishida Koji2,Goda Raito3,Tomiyama Akio3

Affiliation:

1. Mem. ASME Institute of Nuclear Technology, 64 Sata, Mihama-cho, Miata-gun, Fukui 919-1205, Japan e-mail:

2. Institute of Nuclear Technology, 64 Sata, Mihama-cho, Mikata-gun, Fukui 919-1205, Japan e-mail:

3. Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe-shi 657-8501, Hyogo, Japan e-mail:

Abstract

One-region (1-R) sensitivity computations with the annular-flow model were carried out for countercurrent flow limitation (CCFL) at a sharp-edged lower end in vertical pipes to generalize the prediction method for CCFL there (i.e., predicting effects of diameters and fluid properties on CCFL characteristics). In our previous study, we selected a correlation of interfacial friction coefficients, fi, with a function of average void fraction which gave a good prediction of the trend for air–water CCFL data, and we modified it to get good agreement with steam–water CCFL data under atmospheric pressure conditions, but it failed to predict CCFL reasonably at high pressure conditions. We recently found a Russian report on CCFL data at high pressure conditions, by which we improved the fi correlation using the dimensionless diameter and the viscosity ratio or density ratio of gas and liquid phases to get good agreement with CCFL data at high pressures. The improved fi correlation with the viscosity ratio and the improved fi correlation with the density ratio gave similar computed results, but the number of adjustment functions was one for the density ratio and two for the viscosity ratio (i.e., minimum value of two functions).

Publisher

ASME International

Subject

Nuclear Energy and Engineering,Radiation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3